Relays a Sequencers

Electric Heat Sequencers

A new simple method for selecting and replacing electric heat sequencers with only five basic controls. Replace sequencers in almost any existing system.
Sequencer selection:
A. Determine the number of circuits to be switched. (Electrical rating of auxiliary switch same as main switch.) When more than one (1) sequencer is required the sequencers are to be wired in series with the last switch in each sequencer energizing the control circuit of the next sequencer.
B. Select from the chart the sequencers needed for the number of circuits to be switched. These sequencers may be wired in series to allow sequencing of virtually any number of heating elements and fans.
If the sequencers control the fan/blower circuit, the first switch (M1-M2) of each sequencer must always control the fan. This provides a fan interlock to insure that the fan will remain on until all elements are de-energized.

Features:

- Solid State dependability
- Replaces Honeywell and White-Rodgers
- Ambient rated from $20^{\circ} \mathrm{F}$ to $160^{\circ} \mathrm{F}$
- Used on both separate blower and element and combination blower and element systems
- Total 24 volt control
- Standard double quick-connect terminals for combination fan and element systems

Schematic

SPST - 1 switch

33246 DPST - 2 switches

33222
(2)SPST - 2 switches

- Full-load-rated auxiliary contacts
- 7.2 KW combination fan and element rated contacts (23A resistive, 7A motor load)
- Non-positional
- Voltage and ambient self compensating positive temperature coefficient (PTC) heater elements
- Individually packaged with wiring diagrams for up to seven element furnaces.

(1)DPST and
(1)SPST - 3 switches

33233
(2)DPST - 4 switches

- UL and CSA listing available

					SWITCH TIMING: MIN-MAX IN SECONDS							
			SWITCH S	EQUENCE	SWITCH NO. 1 TERMINALS M1 / M2		SWITCH NO. 2 TERMINALS M3 / M4		$\begin{aligned} & \text { SWITCH NO. } 3 \\ & \text { TERMINALS } \\ & \text { M5 / M6 } \end{aligned}$		SWITCH NO. 4 (2) TERMINALS A1 / A2	
NO. OF SWITCHES	MARS NO.	REPLACES KLIXON NO.	FIRST ON LAST OFF	LAST ON FIRST OFF	ON	OFF	ON	OFF	ON	OFF	ON	OFF
1	33243	6000AOM	(1)		1-60	1-45						
2	33246	6000EOM	(1)		1-60	1-45	1-60	1-45				
2	33222	51172-22	No. 1	No. 2	1-24	45-75	30-70	1-40				
3	33232	51172-32	No. 1, No. 2	No. 3	1-24	45-75	1-24	45-75	30-70	1-40		
4	33233	51172-33	No. 1, No. 2	No. 3, No. 4	1-24	45-75	1-24	45-75	30-70	1-40	30-70	1-40

Contact Rating Chart

VAC	RES AMPS	FLA	LRA	PILOT DUTY VA
120	30	23	84	672
240	30	23	60	960
277	23	23	42	775
480	12.5	5	10	400

